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Abstract: Doxorubicin is a highly active antineoplastic agent, but its clinical use is limited because
of its cardiotoxicity. Although nutraceuticals endowed with anti-inflammatory properties exert
cardioprotective activity, their bioavailability and stability are inconsistent. In an attempt to address
this issue, we evaluated whether bioavailable nanoemulsions loaded with nutraceuticals (curcumin
and fresh and dry tomato extracts rich in lycopene) protect cardiomyoblasts (H9C2 cells) from
doxorubicin-induced toxicity. Nanoemulsions were produced with a high-pressure homogenizer.
H9C2 cells were incubated with nanoemulsions loaded with different nutraceuticals alone or
in combination with doxorubicin. Cell viability was evaluated with a modified MTT method.
The levels of the lipid peroxidation products malondialdehyde (MDA) and 4-hydroxy-2-butanone
(4-HNA), and of the cardiotoxic-related interleukins IL-6, IL-8, IL-1β and IL-10, tumor necrosis
factor-alpha (TNF-α), and nitric oxide were analyzed in cardiomyoblasts. The hydrodynamic
size of nanoemulsions was around 100 nm. Cell viability enhancement was 35–40% higher in
cardiomyoblasts treated with nanoemulsion + doxorubicin than in cardiomyoblasts treated with
doxorubicin alone. Nanoemulsions also protected against oxidative stress as witnessed by a
reduction of MDA and 4-HNA. Notably, nanoemulsions inhibited the release of IL-6, IL-8, IL-1β,
TNF-α and nitric oxide by around 35–40% and increased IL-10 production by 25–27% versus cells
not treated with emulsions. Of the nutraceuticals evaluated, lycopene-rich nanoemulsions had
the best cardioprotective profile. In conclusion, nanoemulsions loaded with the nutraceuticals
described herein protect against cardiotoxicity, by reducing inflammation and lipid oxidative stress.
These results set the stage for studies in preclinical models.

Keywords: cardiology; nanomedicine; nutraceuticals; doxorubicin; cytokines

Nutrients 2018, 10, 1304; doi:10.3390/nu10091304 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-8831-7891
https://orcid.org/0000-0002-8200-4480
https://orcid.org/0000-0001-8010-0180
http://www.mdpi.com/2072-6643/10/9/1304?type=check_update&version=1
http://dx.doi.org/10.3390/nu10091304
http://www.mdpi.com/journal/nutrients


Nutrients 2018, 10, 1304 2 of 21

1. Introduction

Doxorubicin is a cytotoxic antibiotic that is used to treat leukemia and lymphoma, as well as
breast, lung, and other solid tumors. However, its clinical use is limited because of its irreversible
cardiotoxicity that can lead to heart failure in a dose-dependent manner [1–3]. The mechanism
of doxorubicin-induced cardiotoxicity is based on the generation of free radicals and reactive
oxygen species that attach to membrane lipids and proteins thereby generating toxic products [4,5].
Doxorubicin stimulates overproduction of reactive oxygen species and impairs cardiac cell function [2].
It induces cardiotoxicity also by producing the pro-inflammatory interleukins IL-8 and IL-6 [6]. Natural
products endowed with antioxidant activity, namely, survivin, sesamol and herbaleonurin, decrease or
prevent doxorubicin-induced damage [7]. The natural antioxidants vitamin E and catalase, and the
synthetic antioxidants 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) are used to treat cardiac
hypertrophy. The mechanism of action of nutraceuticals is based on the reduction of oxidative
stress, cardiovascular risk factors such as Metabolic Syndrome [8,9] but their therapeutic potential in
cardiology remains unknown [10,11].

Lycopene is a potent dietary carotenoid antioxidant thanks to its many conjugated double
bonds [12] and it has the strongest singlet oxygen-quenching ability of all dietary carotenoids [13].
The relationship between lycopene and cardiovascular disease has been examined in several
epidemiological studies [5]. The few studies conducted so far regarding the effect of lycopene or
tomato extract on doxorubicin-induced cardiotoxicity showed some protective effects, but more studies
are needed to evaluate their potential as cardioprotectors under doxorubicin treatment [14]. Curcumin
is the main active ingredient of the turmeric spice Curcuma longa; it has several pharmacological and
biological properties being an antioxidant, anticancer, anti-inflammatory and antiviral agent [12].
Curcumin induces apoptosis, via deactivation of NF-kB and its regulated gene products, and it also
suppresses inflammatory cytokines such as interleukins (IL-1, -1β, -6, and -8), TNF-α, and COX-2 [15].
In studies comparing free and nano encapsulated curcumin, the bioavailability and effect of curcumin
were greatly increased in terms of anti-inflammatory action [16,17]. The mechanism of action of
these nutraceuticals are based on cell cycle regulation, tyrosine kinase modulation [18] inhibition of
cytokine and interleukin secretion, and AMPK-Sclerosis Tuberous Complex (TSC) activation with
consequent AKT-mTOR axis inhibition [19]. However, the clinical use of these nutraceuticals is
limited by their low oral bioavailability due to oxidation in biological environments, which results in
a low accumulation in the cell cytoplasm [20]. Given these limitations, the aim of this study was to
encapsulate such nutraceuticals in nanocarriers able to protect them from oxidative and enzymatic
environmentsin order to achieve a more specific and controlled release. We also investigated the
pathways involved in cardioprotection by analyzing the anti-inflammatory and anti-oxidant effects of
the nanocarriers based onIL-1β, IL-8, IL-6 and malondialdehyde (MDA)/4-HNA cellular secretion
under pro-inflammatory conditions.

The proposed strategy of cardioprotection could be of translational importance in cardioncology
considering the crucial role of the heart and vascular microenvironments in the etiology
of cardiotoxicity.

2. Materials and Methods

2.1. Synthesis and Characterization of Nanoemulsions

Materials: Both soybean oil (density at 20 ◦C of 0.922 g mL−1) and surfactant Lipoid E80 (egg
lecithin powder 80–85% enriched with phosphatidyl choline (PC) and 7–9.5% content in phosphatidyl
ethanolamine (PE)) were purchased from Lipoid GmbH and used without further purification.
Millipore Milli-Q water was used for the preparation of all nanoemulsions and solutions. Chitosan
(CT, LMW 90–150 kDa, DDA 75–85%) was purchased from Sigma Aldrich (Milan, Italy). Chitosan
was soluble in acidic conditions due to the protonation of its amine moieties [21] and was used
without further purification; Fluorescein isothiocyanate (FITC, M.W. = 389.38 g mol−1) was also
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purchased from Sigma Aldrich and used without further purification. Curcumin (from Curcuma longa
Turmeric, powder, M.W. = 368.38 g mol−1) was again purchased from Sigma-Aldrich and used with
no further purification.

2.2. Preparation of Nanoemulsions

Nanoemulsions were prepared following a previously developed protocol [22] which can also
be adapted to the encapsulation of contrasting agents [23]. Briefly, first the oil phase was prepared
by adding the surfactant to the soybean oil and mixed at 60 ◦C under gentle stirring. Then, the oil
phase was added drop wise to the water phase (Milli-Q water) and mixed using the immersion
sonicator (Ultrasonic Processor VCX500 Sonic and Materials) until there was a suitable dissolution.
The pre-emulsions were finally passed at 2000 bar through the high-pressure valve homogenizer
(Microfluidics M110PS) for the first three individual cycles to greatly reduce the initial size, then the
reservoir was continuously refilled for 200 steps. This method was used for the preparation of all
oil-in-water nanoemulsions at 20 wt% of oil concentration. In particular, 5.8 g of surfactant were
dissolved in 24 mL of oil. In the case of curcumin, 100 mg of drug were added to 24 mL of the oil phase
dissolving the surfactant, and mixing at 60 ◦C under gentle stirring. Instead, in the case of tomato
peel extracts, 5.8 g of surfactant were dissolved in 24 mL of oil already containing the biomolecule
always mixing at 60 ◦C under gentle stirring. In fact, in the case of tomato peel extracts, in one option,
~800 g of fresh tomato peels were processed overnight with ~1.5 L of soy-bean oil in the Naviglio
extractor which is a type of solid-liquid extractor [24]. This method has already been used to extract
pure lycopene by using an alcoholic extraction [25]. In this case, for the first time we extracted the
bioactive compounds from the tomato peels by using a vegetable oil as solvent that is then used for
the preparation of the nanoemulsion. In a second option, the same amount of fresh tomato peels
was first lyophilized and then processed by using the same procedure as for the fresh tomato peels.
Fluorescent nanoemulsions were obtained by mixing 4 mL of ethanol solution of FITC (0.75 mg/mL)
to the soybean oil during the emulsion preparation and drying the ethanol from the mixture with mild
heating. The final concentration of FITC in the 10 wt% emulsion is 125 µg/mL. Then, 0.1 M acetic
acid solution of chitosan (0.125 wt%) was prepared. Each nanoemulsion (freshTom-Ne, dryTom-Ne,
curc-Ne and FITC-Ne) 20 wt% oil was added to the chitosan solution quickly under vigorous stirring
and kept under stirring for 15 min to allow uniform chitosan deposition. Final concentrations of oil
and chitosan were 10 and 0.1 wt%, respectively, while the pH of the final secondary nanoemulsions
was 4. These nanoemulsions were re-dispersed using the method reported previously [26] and stored
at room temperature. The nutraceutical-loaded nanoemulsions tested in this study are listed in Table 1.

Table 1. The nutraceutical-loaded and fluorescent nanoemulsions.

Nanoemulsions and Nutraceuticals Loaded Acronym

Uncoated nanoemulsion loaded with fresh tomato extract freshTom-Ne
Chitosan-coated nanoemulsion loaded with fresh tomato extract freshTom Ne-CT
Uncoated nanoemulsion loaded with dry tomato extract dryTom-Ne
Chitosan-coated nanoemulsion loaded with dry tomato extract dryTom-Ne-CT
Uncoated nanoemulsion loaded with curcumin curc-Ne
Chitosan-coated nanoemulsion loaded with curcumin curc-Ne -CT
Uncoated fluorescent nanoemulsion loaded with FITC FITC-Ne
Chitosan-coated fluorescent nanoemulsion loaded with FITC FITC-Ne-CT

2.3. LC/MS Analysis for Lycopene Measurement

HPLC-grade acetonitrile, methanol, dichloromethane, n-hexane and lycopene analytical standard
were purchased from Sigma (St. Louis, MO, USA). The assay was performed according to the procedure
described by Kozukue and Friedman (2003) slightly modified [27]. HPLC analysis was performed
on a Jasco Extrema LC-4000 system (Jasco Inc., Easton, MD, USA) equipped with photo diode-array
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detector and autosampler. Data were acquired and analyses were performed using JASCO ChromNAV
(version 2.02.04). Samples were analyzed on a Gemini C18 column (250 × 4.6 mm, 5 µm, Phenomenex)
and lycopene was detected at 450 nm. The column was eluted at a flow rate of 1 mL/min with a
two-solvent system, namely, (A) acetonitrile, (B) n-hexane/dichloromethane/methanol (1:1:1) with
82–76% A for the first 10 min, then in 2 min 58% A, in 6 min 40% A, and finally returned to 82% A
in 5 min. This was followed by isocratic elution for 2 min. Calibration curve was performed with
lycopene samples prepared freshly on a daily basis. The retention time of lycopene was 15 min. Each
analysis was performed in triplicate. Lycopene standard was diluted to obtain the following ppm
concentrations: 1, 5, 25, 50 and 100. A good linear fit range was found, the regression equation and
correlation coefficient were respectively: y = 11660x + 776.75, R = 0.9998.

2.4. Cell Viability

To evaluate the cardioprotective effects of nutraceutical-loaded nanoemulsions on H9c2
cardiomyoblasts (American Type Culture Collection, Manassas, VA, USA), we measured the
mitochondrial dehydrogenase activity of these cells using a modified MTT [3-(4,5-dimethyldiazol-2-
yl)-2,5-diphenyltetrazoliumbromide] procedure according to the manufacturer’s instructions (Dojindo
Molecular Technologies Inc., Rockville, MD, USA). H9c2 cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) with 10% (v/v) heat inactivated fetal bovine serum, penicillin G
(100 U/mL), and streptomycin (100 mg/mL) in 96-well plates at a density of 10,000 cells per well
at 37 ◦C in a humidified 5% CO2 atmosphere. After 24 h of growth, we divided cells into the
following groups: doxorubicin at 20 µM; nutraceutical-loaded nanoemulsions in the uncoated
form: dryTom-Ne, freshTom-Ne, curc-Ne and in the chitosan-coated formulations, designated
dryTom-Ne-CT, freshTom-Ne-CT, curc-Ne-CT (all at concentrations ranging from 0.5 to 5% w/v
of oil) all tested in combination with 20 µM doxorubicin. We decided to use only this Doxorubicin
concentration referring to several works, related to cardioprotection, in the literature [2,3]. Moreover,
we tested and compared the effects of Enalapril, a common inhibitor of angiotensin-converting enzyme
at 10, 25 and 50 µM as reported elsewhere [28] and Carvedilol at 1, 5 and 10 µM [29] both co-incubated
with 20 µM doxorubicin. Carvedilol is a nonselective beta blocker/alpha-1 blocker used to treat
mild-to-severe congestive heart failure and left ventricular dysfunction after a heart attack. In all
experiments, cells were incubated for 24 h under standard conditions. Cells were then washed three
times with PBS at pH 7.4 and incubated with 100 µL of an MTT solution (0.5 mg/mL in cell culture
medium) for 4 h at 37 ◦C. Absorbance readings were acquired at a wavelength of 450 nm with the
Tecan Infinite M200 plate-reader (Tecan Life Sciences Home, Männedorf, Switzerland) using I-control
software. Relative cell viability (%) was calculated with the following formula [A]test/[A]control × 100,
where “[A]test” is the absorbance of the test sample, and “[A]control” is the absorbance of the control
cells incubated solely in culture medium. After the evaluation of cell cytotoxicity, we measured the
total protein content using the Pierce Micro BCA protein assay kit (Thermo Fisher, Milan, Italy). Briefly,
the cells were washed with ice-cold PBS, and incubated for 15 min in 150 µL cell lysis buffer (0.5%
v/v Triton X-100 in PBS) that included 150 µL of the Micro BCA protein assay kit reagent (prepared
according to the manufacturer’s instructions). Absorbance at 562 nm was measured on a plate reader.
Cytotoxicity measurements were normalized by the amount of total protein content in each well.

2.5. Cellular Uptake Studies

2.5.1. Uptake Quantification

H9c2 cardiomyoblasts were grown in DMEM with 10% (v/v) heat inactivated FBS, penicillin
G (100 U/mL), and streptomycin (100 mg/mL) at 37 ◦C in a humidified 5% CO2 atmosphere.
For uptake experiments, 5 × 103 cells/well were seeded in a 24-well plate and allowed to grow
for 24 h. The medium was then replaced with 0.1 mL of a 0.5% oil solution of fluorescent uncoated
and chitosan-coated nanoemulsions in culture medium and incubated for between 0.5 and 24 h.
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Cells were then washed twice with PBS (pH 7.4) and after specified time intervals, the experiments
were terminated by removing the supernatant, washing the cells three times with 10 mM PBS
and lysing the cells with 0.1 mL of 0.5% Triton X-100 in 0.2 N NaOH. The membrane-bound and
internalized fluorescent nanoemulsions were quantified by analyzing the fluorescence of the cell
lysate (λexc = 485 nm, λem = 535 nm), using a calibration curve with 0.001 up 5% oil of fluorescent
nanoemulsions dispersed in a cell lysate solution (106 untreated cells dissolved in 1 mL of the Triton
X-100/0.2 N NaOH solution).

2.5.2. Mechanistic Studies

To determine the mechanism underlying nanoemulsion internalization in H9c2 cells,
we investigated the effects of following treatment: bafilomycin A1 (that inhibits endosomal acidification
by inhibiting membrane ATPases, that also affects the budding of endosomal carrier vesicles from early
endosomes, filipin (an inhibitor of caveolae-mediated endocytosis), nocodazol (that inhibits membrane
ruffling and active [vesicular] transport by disrupting cytoplasmic microtubules), cytochalasin D
(a well-known inhibitor of membrane ruffling and active [vesicular] transport that acts by disrupting
actin fibers), hypertonic sucrose and potassium-free buffer (that inhibit the clathrin-mediated uptake
with lower and higher selectivity, respectively), and sodium azide (that reduces active transport by
inhibiting cellular respiration).In the case of fluorescent nanoemulsions, cellular uptake experiments
were conducted after 4 h of incubation in the presence of these inhibitors, specifically: 0.45 M sucrose,
0.1mg/mL cytochalasin D, 1 mg /mL nocodazole, 0.1 mg/mL filipin and 2 × 10−7 M bafilomycin
A1. In separate experiments, cancer cells were preincubated with 10−2 M of the metabolic inhibitor
sodium azide for 30 min before the uptake of uncoated and chitosan-coated nanoemulsions and during
uptake to evaluate the energy dependence of the process. With the exception of sodium azide and
sucrose, which were dissolved directly in the culture medium, stock solutions of the other effectors
were prepared in DMSO then diluted with culture medium to the proper concentration. H9c2cells
were pre-incubated at 4 ◦C for 30 min with inhibitors then at 37 ◦C for 4 h as reported elsewhere [30].
Instead, to study the effect of intracellular potassium depletion, cardiomyocytes were rinsed twice and
incubated with a potassium-free buffer solution with the following substances: 0.14 M NaCl, 0.02 M of
MES buffer, 10−3 M of CaCl2 and 1 mg/mL of glucose pH 7.4 for 30 min before uptake experiments
were performed in the same medium, as reported in literature [31].

2.6. Cellular Antioxidant Activity Following Oxygen Radical Generator Exposure

Cellular uptake of nanoemulsionsinH9c2 cells after oxygen radical generator exposure
was measured as reported elsewhere [32]. In brief, H9c2cellswere incubated with 50 µL of
2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) 4 µM for 10 min to simulate oxidative
stress. Cells were then washed three times with PBS and then treated with nutraceutical-loaded
nanoemulsions at oil concentrations ranging from 0.5 to 5% w/v of oil for 10, 20, 45, or 60 min.
Gallic Acid (at 25, 50 and 100 µM), a common antioxidant, was used as positive control. Subsequently,
samples were washed twice and sonicated at 10% amplitude with energy of 20 W/cm2 for 5 min to
lyse cardiomyoblasts by sonicator (Sonics, Vibra Cell, Newtown, CT, USA). After sonication, samples
were centrifuged for 30 min at 2700× g. The supernantant was then removed as the lysate fraction.
Three different plates per compound were run for lysate fractions.

2.7. Detection of Intracellular Reactive Oxygen Species

The formation of intracellular reactive oxygen species was evaluated using a conventional
fluorescent probe, called DCFH-DA, as described elsewhere [33]. Briefly, H9c2 cells were grown in
DMEM with 10% (v/v) heat-inactivated FBS, penicillin G (100 U/mL) and streptomycin (100 mg/mL)
at 37 ◦C in a humidified 5% CO2 atmosphere. Subsequently, 5 × 103 cells/well were seeded in a
24-well plate and allowed to grow for 24 h. After washing twice with PBS, cells were pretreated or not
with all nutraceutical-loaded nanoemulsions at oil concentrations ranging from 0.5 to 5% w/v of oil
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for 4 h; pretreatment also with gallic acid (at 25, 50 and 100 µM) was used as positive control. After
pretreatments, cells were then incubated with 5 µM DCFH-DA in PBS for 30 min. After the DCFH-DA
removal, cells were stimulated with 40 ng/mL of lipopolysaccharide (LPS) or doxorubicin at 50 nM
for 12 h. Cell fluorescence was measured using a microplate spectrofluorometer (xMark Microplate,
Spectrofluorometer Biorad, Milan, Italy). Intracellular antioxidant activity was expressed as percentage
of control cells.

2.8. Lipid Peroxidation Studies

To study the protective effects of nutraceutical-loaded nanoemulsions at the membrane level of
cardiomyoblasts, H9c2 cells were grown in DMEM with 10% (v/v) heat inactivated FBS, penicillin
G (100 U/mL), and streptomycin (100 mg/mL) at 37 ◦C in a humidified 5% CO2 atmosphere.
Subsequently, 5 × 103 cells/well were seeded in a 24-well plate and allowed to grow for 24 h. Briefly,
H9c2 cells were treated with doxorubicin (50 nM) or LPS (40 ng/mL) for 6 h or pretreated for 4 h
with all nutraceutical-loaded nanoemulsions at oil concentrations ranging from 0.5 to 5% w/v or
with gallic acid (at 25, 50 and 100 µM) as positive control. Then, cells from each group were washed
three times with cold PBS, harvested with 0.25% trypsin, and centrifuged at 1000× g for 10 min.
The supernatant was discarded and the cell pellet sonicated in cold PBS. After centrifugation
(800× g, 5 min), the supernatant was immediately evaluated for MDA and 4-HNAcommercial kits
with a spectrophotometer according to the manufacturer’s protocols (Sigma Aldrich, Milan, Italy).
We measured the protein content of the cell homogenates using the Micro BCA protein assay kit (Pierce,
Thermo Fisher, Milan, Italy) according to kit instructions.

2.9. Measurement of Nitric Oxide

To evaluate the effects of nutraceutical-loaded nanoemulsions on the release of nitric oxide from
H9c2 cells we analyzed the release of nitrite, a stable product of nitric oxide in aqueous medium, using
the Griess Reagent System (Promega, Madison, WI, USA) as described elsewhere [18]. Briefly, H9c2
cardiomyoblasts were grown in DMEM with 10% (v/v) heat inactivated FBS, penicillin G (100 U/mL),
and streptomycin (100 mg/mL) at 37 ◦C in a humidified 5% CO2 atmosphere. Subsequently,
5 × 103 cells/well were seeded in a 24-well plate and allowed to grow for 24 h. Cells were treated
with doxorubicin (50 nM) or LPS (40 ng/mL) for 6h or pretreated for 4 h with all nutraceutical-loaded
nanoemulsions at oil concentrations ranging from 0.5 to 5% w/v. Also, in this case, pre-incubation
with gallic acid (at 25, 50 and 100 µM), a common antioxidant, was used as positive control.
The culture medium was then mixed with an equal volume of sulfanilamide solution (1% v/v in 5%
v/v phosphoric acid) and of N-1-naphtylethylenediamine dihydrochloride solution (0.1% v/v in water).
Absorbance was measured at 540 nm with a spectrophotometer (xMark Microplate, Spectrofluorometer
Biorad, Milan, Italy). Nitrite concentrations were determined from a calibration curve of standard
0.1 M sodium nitrite concentrations from 0.5 to 50 µM against absorbance.

2.9.1. Intracellular Calcium Level

Doxorubicin-induced cardiotoxicity is also accompanied by an increase in intracellular calcium
levels. Dysregulation of intracellular calcium concentrations is both a result and a cause of
the generation of radical oxygen species. Doxorubicin induces the release of calcium from the
sarcoplasmic reticulum by increasing the probability that the channel adopts the open state.
An increase in intracellular calcium is not the only cause of mitochondrial calcium dysregulation,
in fact, doxorubicin affects mitochondrial calcium transport thereby contributing to the increase in
intracellular calcium levels. To monitor the intracellular calcium in H9c2 cardiomyoblasts, we used
the fluorescence dye Fluo-3 AM, following the manufacturer’s protocol. Briefly, H9c2 cells were
treated with doxorubicin (50 nM) or LPS (40 ng/mL) for 6h or pretreated for 4h with each of the
nutraceutical-loaded nanoemulsions at oil concentrations ranging from 0.5 to 5% w/v. After incubation,
H9c2 cardiomyoblasts were loaded with 5 µM Fluo-3 AM at 37 ◦C for 30 min in the dark, and then
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washed three times with PBS to remove excess dye. The fluorescence intensity of Fluo-3 chelated
with calcium was recorded on a microplate spectrofluorometer (xMark Microplate, Spectrofluorometer
Biorad, Milan, Italy) at excitation and emission wavelengths of 488 and 525 nm, respectively.

2.9.2. Anti-Inflammatory Studies

The expression of IL-6, IL-8, IL-1β, IL-10, and tumor necrosis factor-alpha (TNF-α) in
cardiomyoblasts was evaluated with ELISA, as described elsewhere [34]. Briefly, H9c2 cells were
grown in DMEM with 10% (v/v) heat inactivated FBS, penicillin G (100 U/mL), and streptomycin
(100 mg/mL) at 37 ◦C in a humidified 5% CO2 atmosphere. After incubation for 24 h and starvation
in serum-free medium for 2.5 h, cardiomyoblasts were treated or not with the nutraceutical-loaded
nanoemulsions at oil concentrations ranging from 0.5 to 5% w/v for 4h before exposure to LPS
(40 ng/mL) for 12 h to stimulate inflammation. Subsequently, culture supernatants were collected,
centrifuged to pellet any detached cells, and measured using TNF-α, IL-1β, IL-6, IL-8 and IL-10 ELISA
kits according to the manufacturer’s instructions (Sigma Aldrich, Milan, Italy). The sensitivity of
this method was below 10 (pg/mL), and the assay accurately detected cytokines in the range of
1–32,000 pg/mL.

2.9.3. Statistical Analysis

Differences between the experimental groups were identified with a one-way analysis of variance
and subsequently with Turkey’s multiple comparison test in Sigma Plot Software (Sigma, San Jose, CA,
USA). p < 0.05 was the lowest acceptable threshold for significance.

3. Results

3.1. Synthesis and Chemical-Physical Characterization of Nutraceutical-Loaded Nanocarriers

Oil in water nanoemulsions in their uncoated and chitosan-coated form were produced as
previously described [23]. In particular, among different possible sizes of the nanoemulsions that
can be tuned with the amount of surfactant, namely egg lecithin, we chose to work with the smallest
possible. Indeed, we have already demonstrated the importance of scaling down the size in terms of
bioavailability once in vivo. Regarding curcumin, we reproduced the uncoated and chitosan-coated
oil in water nanoemulsion that we previously used to evaluate their cardio-protective properties [16].
Then, given the well-known cardio-protective properties of lycopene, we started from tomato peel
that is notoriously rich in lycopene and we applied the Naviglio solid-liquid extraction method by
directly immersing tomato peel in the oil phase. After enriching the oil with the active principles
contained in tomato peel, we used it to prepare the uncoated and chitosan-coated form of the oil in
water nanoemulsion by applying the same procedure described above. In one extraction procedure,
we used wet tomato peels directly as obtained from a tomato company (Pietro Grimaldisrl, Sant’Egidio
del Monte Albino SA, Italy), and in another we lyophilized the tomato peels before extraction. In the
latter case, we used an amount of peel corresponding to the starting amount of wet tomato peels.
For the overall uptake study, we also used oil in water nanoemulsions again uncoated and coated with
chitosan by repeating the procedure previously reported. Together with the nutraceutical encapsulating
nanoemulsions we also used an FITC-loaded nanoemulsion for uptake studies. The dimensional
characterization of the nanocarriers used in this study is reported in Table 2, together with the z-pot
of the all systems. Thanks to the surface charge and to the narrow size distribution, the systems
are stable for several months especially in the coated forms, as reported elsewhere [21,26]. As an
example, the uncoated and coated nanoemulsions richest in lycopene were characterized by cryo-TEM
as reported in Figure 1. It is clear from the morphological analysis the level of monodispersion of the
uncoated and coated carrier and the sizes are in agreement with the DLS analysis.
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Table 2. Physical–chemical characteristics of nanocarriers used in this study: hydrodynamic size,
polydispersity index and ζ potential.

Nanoemulsions Mean Hydrodynamic Size (nm) PDI ζ-Potential (mV)

Uncoated nanoemulsion loaded with fresh tomato extract 97.09 (0.59) 0.098 (0.011) −22.9 (1.3)
Chitosan-coated nanoemulsion loaded with fresh tomato extract 139.6 (0.85) 0.076 (0.004) 49.6 (0.5)
Uncoated nanoemulsion loaded with dry tomato extract 93.23 (0.66) 0.122 (0.020) −23.0 (0.9)
Chitosan-coated nanoemulsion loaded with dry tomato extract 128.8 (1.01) 0.056 (0.007) 46.1 (0.5)
Uncoated nanoemulsion loaded with curcumin 105.4 (2.83) 0.118 (0.049) −22.0 (5.6)
Chitosan-coated nanoemulsion loaded with curcumin 119.8 (0.80) 0.079 (0.010) 44.3 (1.7)
Uncoated fluorescent nanoemulsion loaded with FITC 93.83 (0.86) 0.090 (0.016) −30.5 (1.5)
Chitosan-coated fluorescent nanoemulsion loaded with FITC 94.50 (0.75) 0.075 (0.010) 23.7 (0.2)
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Figure 1. Cryo-TEM projection images of dryTom-Ne (left) and dryTom-Ne-CT (right).

3.2. Measurement of Lycopene Content in Tomato Peel Extracts

The amount of lycopene in the two samples was measured using a previously reported LC/MS
method slightly modified [25]. Quantitative measurements were obtained on the basis of a calibration
curve established with commercial lycopene standard samples as reported in the materials and methods
section. The lycopene content was significantly lower in “fresh tomato extract” than in “dry tomato
extract” (0.007 mg/mL ± 0.0005, versus 0.029 mg/mL ± 0.001). A representative chromatogram of
the two samples is depicted in Figure 2. This is due to the fact that the presence of water in fresh
products makes the extraction of lipophilic compounds more difficult using this method. Based on this
information, for all subsequent studies, it is important to specify that the nanoemulsions are based
on fresh tomato extract at 0.5%, 1% and 5% of oil contain, respectively, 0.035, 0.07 and 0.35 µg of
lycopene/mL of solution. Moreover, nanoemulsions must be based on dry tomato extract at 0.5%,
1% and 5% of oil contain, respectively, 0.145, 0.29 and 1.45 µg of lycopene/mL of solution.
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Figure 2. Representative chromatograms for the samples “dry tomato extract” (left) and “fresh tomato
extract” (right). Lycopene is peak n. 5.
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3.3. Cell Viability

As shown in Figure 3, doxorubicin treatment for 24 h decreased cardiomyoblasts viability by more
than 80% but co-incubation with all the nanoemulsions used resulted in concentration-dependent
cardioprotective effects. Chitosan-coated forms of nanoemulsions had the best cardioprotective
properties, probably due to a better cellular uptake on cardiomyoblasts (Figure 3A). Overall cell
viability was 5–20% higher in cells treated with chitosan-coated nanoemulsions than in unpretreated
cells. Moreover, lycopene-rich nanoemulsions (dry-Tom-Ne) had better cardioprotective properties
than did fresh-Tom-Ne-treated and curc-Ne-treated cardiomyoblasts. In fact, the viability of
cardiomyoblasts treated with uncoated and chitosan-coated dryTom-Ne at 5% oil was about 45%
and 60% higher, respectively versus doxorubicin-treated cells.
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Figure 3. Cell viability in function of the concentration of nutraceutical-loaded uncoated and
chitosan-coated nanoemulsions all tested at concentrations from 0.5 to 5% v/v of oil tested combined
with doxorubicin at 20 µM. (A). The viability of cardiomyoblasts incubated with doxorubicin (at 20 µM)
in association with Enalapril at 10, 25 and 50 µM and Carvedilol at 1, 5 and 10 µM. (B). Difference in the
percentage of cell viability versus control cells, between (C) Enalapril and (D) Carvedilol and the best
nanoemulsion (dryTom-Ne-CT) at different concentrations * p < 0.001; ** p < 0.05; ns: not significant.

To determine the translational potential of these nanoemulsions in cardioprotection during
doxorubicin treatment, we compared the effects of Enalapril and Carvedilol (Figure 3B–D) as common
drugs used in cardio-oncology; interestingly, the best nanoemulsion formulation at the higher
concentration tested seems to be 30% and 35% more effective compared to Enalapril and Carvedilol at
very high concentration such as 50 and 10 µM, respectively (p < 0.001 for both).

3.4. Uptake Quantification and Mechanistic Studies

As we previously reported [18], the cellular uptake of fluorescent nanocarriers is time-dependent.
In the present study, after 2 h of incubation, approximately 30–35% of chitosan-coated nanoemulsions
were internalized or adhered to the membrane of H9c2 cells (Figure 4). The uptake of uncoated
nanoemulsions at 24 h of incubation was invariably less than 30–35% that of chitosan-coated emulsion,
which corroborates the effects on cell viability described previously. After 24 h of incubation, around
90% of chitosan-coated nanoemulsions were internalized in cardiomyoblasts (Figure 4). Having
established that nanocarriers are able to internalize in H9c2 cells, we complemented this study by
analyzing the mechanism of cell uptake using a small library of inhibitors of general active transport
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processes, endosomal acidification, caveolae-mediated endocytosis, membrane ruffling and vesicular
transport microtubules and actin fibers [35]. Thus, we evaluated the effects of these inhibitors on
the internalization of fluorescent nanocarriers in cells. As shown in Figure 2, the nanocarriers were
highly sensitive to all these factors. In detail, sodium azide inhibited endocytosis by 55–60% and
cytochalasin by 35–40%. Nocodazole did not have any significant effect on H9c2, which is in line with
the energy-dependent nature of the nanocarrier internalization and the involvement of stress fibers,
but not of microtubules. Filipin did not significantly inhibit cellular internalization thereby excluding
a caveolae-mediated endocytic mechanism of nanoemulsions uptake. Bafilomycin A1 significantly
reduced endocytosis by 50%. Although hypertonic sucrose is known to inhibit also macropinocytic
and caveolar uptake, the more clathrin-selective potassium-free buffer had the same inhibitory effect,
indicating the clathrin-dependent endocytosis is the most likely internalization mechanism [36].
It seems that uncoated and chitosan-coated nanoemulsions have the same mechanism of endocytosis,
however, chitosan-coated nanoemulsions are clearly more sensitive to the inhibitors than uncoated
nanoemulsions, which indicates a clathrin-dependent endocytosis.
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Figure 4. Left, overall cellular uptake quantification of H9c2 cells (at a density of 5 × 103 cells/well)
from 0.5 up to 24 h of contact with fluorescent nanocarriers at 1% v/v oil. Right, effect of different
inhibitors on the internalization of fluorescent nanocarriers (1% v/v oil) in H9c2 cells after 4 h of
incubation. The data are normalized against their controls.

3.5. Cellular Antioxidant Activity after Oxygen Radical Generator Exposure

As shown in Figure 5A, the mean antioxidant capacity differed significantly between the lysates
of cells treated with chitosan-coated nanocarrier sand those of uncoated nanocarriers. Specifically,
treatment of H9c2 cells with dryTom-Ne exerted antioxidant activity in a concentration-dependent
manner with a mean of 12,323 (±998), 20,233 (±956), 30,122 (±1023) TE/L/10 cells for 0.5%, 1% and 5%
of oil, respectively. The chitosan-coated emulsion had similar behavior with even higher antioxidant
activity than uncoated nanocarriers with a mean of 15,456 (±744), 27,233 (±535) and 38,344 (±898)
TE/L/10 cells for 0.5%, 1% and 5% of oil, respectively. The antioxidant properties of dryTom-Ne were
10–13% higher than curc-Ne, and around 40% higher than freshTom-Ne. Gallic acid, a common
antioxidant used as positive control, as reported in Figure 5B has a slight antioxidant property
compared to nanoemulsions a mean of 10,245 (±886), 14,563 (±978) and 19,856 (±1023) TE/L/10 cells
for 25, 50 and 100 µM, respectively.



Nutrients 2018, 10, 1304 11 of 21
Nutrients 2018, 10, x FOR PEER REVIEW  11 of 21 

 

 

Figure 5. Mean antioxidant values (±SEM) of H9c2 cell lysates (TE/L/106 cells). Antioxidant 

values of cell lysates after challenge with 50 mL of AAPH (4 mM) for 10 min and recovery 

with PBS (control) or chitosan-coated or uncoated nutraceutical-loaded nanoemulsions (A) 

or gallic acid (B) at 25, 50 and 100 µM. * p < 0.001; ** p < 0.05. 

3.6. Detection of Intracellular Reactive Oxygen Species 

The H9c2 cell lysate fraction served as a model to measure the antioxidative effect of 

nutraceutical-loaded nanocarriers under pro-inflammatory conditions induced by 

lipopolysaccharides (LPS) and doxorubicin (Figure 6). As reported elsewhere [37], intracellular ROS 

production was higher in LPS-treated H9c2 cells due to the stimulation of the TLR4—NADPH 

oxidase 1 (NOX1) pathway. Treatment of cardiomyoblasts with LPS and doxorubicin increased the 

antioxidant properties by 50% and 55–60%, respectively, versus the control (Figure 6A). Incubation 

with nutraceutical-loaded nanocarriers invariably decreased oxidative status at all concentrations 

tested but not in a statistically significant manner at 0.5% oil, compared to untreated cells. Chitosan-

coated dryTom-Ne, namely dryTom-Ne-CT, had the best antioxidant activity. Indeed, it reduced 

oxidative stress by 45–50%, similar to control cells, and by 45% similar to LPS- and doxorubicin-

treated cells. In LPS-treated cells, the antioxidant activity of dryTom-Ne was 35% and 25% higher 

than that of freshTom-Ne and curc-Ne, respectively (p < 0.001). As shown in Figure 6B,D, Gallic acid 

used as positive control, had antioxidant effects both in LPS (Figure 6B) and Doxorubicin (Figure 6D) 

treated cells with a reduction of oxidative stress of around 26% and 21% at 100 µM, respectively, 

compared to untreated cells (p < 0.001 for both). 

Figure 5. Mean antioxidant values (±SEM) of H9c2 cell lysates (TE/L/106 cells). Antioxidant values of
cell lysates after challenge with 50 mL of AAPH (4 mM) for 10 min and recovery with PBS (control) or
chitosan-coated or uncoated nutraceutical-loaded nanoemulsions (A) or gallic acid (B) at 25, 50 and
100 µM. * p < 0.001; ** p < 0.05.

3.6. Detection of Intracellular Reactive Oxygen Species

The H9c2 cell lysate fraction served as a model to measure the antioxidative effect of
nutraceutical-loaded nanocarriers under pro-inflammatory conditions induced by lipopolysaccharides
(LPS) and doxorubicin (Figure 6). As reported elsewhere [37], intracellular ROS production was higher
in LPS-treated H9c2 cells due to the stimulation of the TLR4—NADPH oxidase 1 (NOX1) pathway.
Treatment of cardiomyoblasts with LPS and doxorubicin increased the antioxidant properties by
50% and 55–60%, respectively, versus the control (Figure 6A). Incubation with nutraceutical-loaded
nanocarriers invariably decreased oxidative status at all concentrations tested but not in a statistically
significant manner at 0.5% oil, compared to untreated cells. Chitosan-coated dryTom-Ne, namely
dryTom-Ne-CT, had the best antioxidant activity. Indeed, it reduced oxidative stress by 45–50%,
similar to control cells, and by 45% similar to LPS- and doxorubicin-treated cells. In LPS-treated cells,
the antioxidant activity of dryTom-Ne was 35% and 25% higher than that of freshTom-Ne and curc-Ne,
respectively (p < 0.001). As shown in Figure 6B,D, Gallic acid used as positive control, had antioxidant
effects both in LPS (Figure 6B) and Doxorubicin (Figure 6D) treated cells with a reduction of oxidative
stress of around 26% and 21% at 100 µM, respectively, compared to untreated cells (p < 0.001 for both).
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Figure 6. Detection of intracellular reactive oxygen species by fluorescence (a.u) in the H9c2 cell line
(5000 cells/well). Cells were pretreated or not with uncoated and chitosan-coated nutraceutical-loaded
nanoemulsions for 4 h before stimulation with 40 ng/mL of lipopolysaccharide (LPS) (A) or 50 nM of
doxorubicin (C) for 24 h. Gallic acid was also exposed to cardiomyoblasts as positive control before
stimulation with LPS (B) or doxorubicin (D). * p < 0.001; ** p < 0.05.
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3.7. Lipid Peroxidation Studies

As reported in Figure 7, nutraceutical-loaded nanocarriers significantly decreased the production
of MDA and 4HNA by cardiomyoblasts under pro-inflammatory conditions (LPS) and chemotherapy
(doxorubicin). Inhibition of lipid peroxidation is a cardioprotective strategy used to increase vascular
and cardiac cell viability during anthracycline therapies. Specifically, curcumin-loaded nanocarriers,
chitosan coated, at 5% oil reduced the formation of MDA and 4HNA by 31%and 23%, respectively
versus LPS-treated cells (p < 0.001); dryTom-Nehad better lipid-antioxidant properties than the other
nutraceuticals with reductions (at 5% oil) of MDA and 4HNA of 37.5% and 57%, respectively versus
LPS-treated cells (p < 0.001). The same applies to doxorubicin-treated cells, which indicates that
the same mechanism of action counteracts lipid peroxidation synthesis in the two nutraceuticals.
As positive control, we analyzed effects of gallic acid as common antioxidant at the same conditions
tested with nanoemulsions and, as reported in Figure 7E–H, at 100 µM, it reduced MDA and 4HNA
production of around 26% and 21% in LPS treated cells and of 20% and 28%, respectively, in doxorubicin
treated cells. However, based on all results obtained, chitosan-coated lycopene-enriched nutraceuticals,
namely dryTom-Ne-CT, had the best biological properties of all the nutraceuticals evaluated thereby
corroborating the results of the cell viability, antioxidant and cellular uptake studies.

3.8. Measurement of Nitric Oxide

Nitric oxide initiates lipid peroxidation and, by interacting with superoxide anion, produces
peroxynitrite which is implicated in atherosclerosis [38]. Peroxynitrites trigger lipid peroxidation,
protein oxidation, nitration and activation of matrix metalloproteinases [39]. Under pro-inflammatory
conditions and chemotherapy, cardiomyoblasts can produce NO. As shown in Figure 8A,B, H9c2 cells
increase NO production under pro-inflammatory conditions and chemotherapy. Treatment with
nutraceutical-loaded nanocarriers significantly inhibited NO production at all tested concentrations
with inhibition percentages reaching 93% (very near to baseline concentrations) in the case of
curc-Ne-CT and dryTom-Ne-CTat the maximum tested concentration (5% of oil). As shown in
Figure 8, there was no significant difference between curcumin-loaded and high lycopene concentration
nanoemulsions, for both uncoated and chitosan coated nanoemulsions, which suggests that the
same mechanism of action underlies the NO inhibition of these bioactives. Also, in this experiment,
the chitosan-coated nanoemulsions were more effective than the uncoated ones. As positive control,
gallic acid at the maximum concentration tested (100 µM) inhibit of around 33 and 42% NO production
under LPS and Doxorubicin exposure, respectively, compared to unpretreated cells.

3.9. Calcium Levels

To determine the intracellular calcium level in cardiomyoblasts during LPS or doxorubicin
treatments and the biological effects of nutraceuticals-loaded nanoemulsions, we used the fluorescence
probe Fluo-3 AM as reported elsewhere [40], LPS and DOXO treatment dramatically increased
intracellular calcium levels in cardiomyoblasts compared to control cells (p < 0.001) for both.
DryTom-Ne-CT treatment dose-dependently attenuated the overload of intracellular calcium in
cardiomyoblastsas witnessed by the reduced fluorescence intensities of 8%, 19% and 55.6% at 0.5%,
1% and 5% (p < 0.001) compared to cells treated with LPS alone (Figure 9A). Similar behavior was
seen for DOXO exposed cardiomyoblasts; specifically, dryTom-Ne-CT decreased calcium overload in
H9c2 cells of 0.6%, 17% and 52% at 0.5%, 1% and 5% (p < 0.001) compared to only DOXO treated cells
(Figure 9B). These results suggested that nutraceuticals-loaded nanoemulsions were able to reduce the
overload of intracellular calcium in H9c2 cells induced by LPS and DOXO treatments.

Anti-Inflammatory Studies

Given the anti-inflammatory activity of nutraceuticals, we investigated how nutraceuticals affect
IL-8, IL-6, IL-1β, IL-10 and TNF-α production in cardiomyoblasts under pro-inflammatory conditions.
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As shown Figure 8, LPS at a dose of 40 ng/mL significantly stimulated the production of all interleukins
analyzed versus untreated cells due to their binding with Toll Like Receptor type 4 (TLR4) expressed on
the membrane of cardiomyoblasts leads to up-regulation of interleukins mRNA expression and their
secretion. Pretreatment with all nutraceutical-loaded nanocarriers significantly decreased the level of
all molecules analyzed (Figure 10). Specifically, dryTom-Ne-CTat 5% oil decreased the levels of IL-8,
IL-6, IL1β and TNFα, by 58%, 64%, 67% and 65% respectively, versus LPS-treated cardiomyoblasts
(p < 0.001). These effects are very similar to those observed for curcumin-loaded nanoemulsions
(chitosan coated) thereby indicating very strong anti-inflammatory effects. Lastly, IL-10, dryTom-Ne
and curc-Ne stimulated the release of IL-10 from cells under pro-inflammatory conditions.
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Figure 7. Cellular quantification of malondialdehyde (MDA) and 4HNA production under
pro-inflammatory conditions and doxorubicin exposure. MDA and 4HNA (nmol/mL) production by
cardiomyoblasts treated with LPS (A,B) and doxorubicin (C,D) alone or combined with uncoated or
chitosan-coated nutraceutical-loaded nanocarriers at concentrations ranging from 0.5 to 5% oil. At the
same condition, as positive control, we tested also the effects of gallic acid at 25, 50 and 100 µM (E,F)
for LPS treatments; (G,H) for doxorubicin treatments). * p < 0.001; ** p < 0.05; ns: not significant.
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Figure 8. Measurement of nitric oxide (NO) production expressed as nitric oxide concentration (µM)
in H9c2 cells (5000 cells/well). Cells were pretreated or not with uncoated and chitosan-coated
nutraceutical-loaded nanoemulsions at 0.5%, 1% and 5% of oil 4 h before stimulation with 40 ng/mL
of LPS (A) or 50 nM of DOXO, (B) for 24 h. Pretreatments were also performed by incubating cells
with gallic acid, as positive control, for both LPS (C) and DOXO (D) treatments. * p < 0.001; ** p < 0.05;
ns: not significant.
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Figure 10. Anti-inflammatory effects of nutraceutical-loaded nanoemulsionson IL-8 (A), IL-6 (B), IL-1β
(C), TNF-α (D) and IL-10 (E) production of cardiomyoblasts (at a density of 1.2 × 105 cells/well).
Cells were treated or not with 0.1 mL of a 0.5%, 1% and 5% of oil of chitosan-coated and uncoated
nanoemulsions for 5 h before exposure to lipopolysaccharides (40 ng/mL) for 12 h. * p < 0.001,
** p < 0.05; ns: not significant.

4. Discussion

Anthracyclines are powerful drugs used to treat a multitude of neoplasms; however, cardiotoxicity,
which generally results from ROS overproduction, lipid peroxidation and mitochondrial damage,
compromises their clinical applications. The heart and vascular microenvironments play key
pathological roles in the etiology of cardiovascular disease related to some anticancer drugs and
to radiotherapy. These recent observations are of extreme interest in cardioncology because
several interleukins, cytokines, growth factors and hormones are crucial for cardiomyocyte survival.
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Specifically, IL-6 is a cytokine derived from T lymphocytes, macrophages and adipocytes, and acts via
its membrane-bound or soluble receptor, stimulating C-reactive protein, fibrinogen hepatic synthesis,
and joint inflammation and accelerating atherosclerosis processes. High IL-6 concentrations have been
associated with an increased relative risk of myocardial infarction in healthy men. Moreover, IL-6 and
its receptor levels have an early peak in the acute phase of myocardial infarction, probably due to plaque
instability [41]. Moreover, recent clinical evidence supports the potential role of IL-8 in atherosclerosis,
both as a marker or as a potential therapeutic target. In the field of interventional cardiology, it was
suggested that increased serum levels of IL-8 after percutaneous coronary intervention could predict
the development of heart failure in patients with acute myocardial infarction [42]. Another interleukin
of interest in cardioncology is Interleukin-1 (IL-1) that plays an important role in the development
and progression of coronary atherosclerosis and congestive heart failure. Moreover, IL-1 receptor
antagonists exerted cardioprotective effects in rat myocardial ischemia-reperfusion injury and mouse
viral myocarditis. Interestingly, doxorubicin treatment leads to overproduction of IL-1β in cardiac
tissue, which suggests that this interleukin is involved in doxorubicin-related cardiotoxicity and
apoptosis induction also by overloading calcium in cardiac cells. Moreover, IL-1 in association with
nitric oxide (in the field of the NO-IL1β axis) can induce neonatal cardiac myocyte apoptosis even at
very low concentrations [43].

Under pro-inflammatory conditions such as LPS exposure, fibroblasts, monocytes, macrophages
and cardiomyocytes secrete TNF-α [44]. Toll-like receptor 4 (TLR4), which is the main target of
LPS, is expressed throughout the body including cardiomyocytes, and it is involved in the etiology
of several cardiovascular diseases; for example, cardiac dysfunctions were frequently observed in
patients with sepsis and also in animals injected with LPS [45]. These findings suggest that, the heart
microenvironment, seen as the inflammation-interleukin-NO-ROS axis, could play a key role in the
pathogenesis of cardiotoxicity. Consequently, new cardioprotective strategies that act on this network
could optimize heart protection in patients undergoing cancer treatments.

Nutraceuticals are natural bioactives that exert anti-inflammatory activities. Lycopene is a
promising cardioprotective anti-inflammatory molecule that acts on the AMPK-mTOR pathway
and exerts anti-atherosclerosis and anti-myocarditis effects [46]. Lycopene, a naturally occurring
hydrocarbon carotenoid found in red food such as tomatoes, pink guavas and watermelons has
attracted considerable clinical attention as a potential chemopreventive agent against cardiovascular
disease [47]. Interestingly, lycopene regulates Mg2+−ATPase and maintains the Mg2+ balance during
some anticancer therapies [48]. In addition, lycopene exerted heart-protective effects and improved
cardiac function in preclinical models [49]. Curcumin suppresses the inflammatory cytokines IL-1,
-1β, -6, and -8, TNF-α, and COX-2 [16]. It was recently demonstrated that curcumin decreased several
markers of doxorubicin-related cardiotoxicity in preclinical models, however its biological activities are
limited by its reduced bioavailability [12]. Consequently, new formulations are required to optimize
bioavailability of cardioprotective nutraceuticals during doxoribincin treatment. Biodegradable
nanocarriers are promising pharmacological tools to increase in vivo accumulation of drugs and/or
chemo-sensitizing agents in cancer therapy both by oral or by intravenous injection as we have recently
shown with similar nanocarriers [16,23].

Here we show that the nanoemulsions loaded with both curcumin and lycopene (derived
from fresh or dry tomato extract) exert multiple molecular mechanisms of cardioprotection during
doxorubicin treatment. The anti-inflammatory activities of the nanocarriers described herein hold
potential in terms of modulating the heart microenvironment thereby providing insights for further
preclinical studies, also in combination with other cardiotoxic anticancer drugs, namely anti-VEGF
therapy and immunotherapies. Such studies could be valuable especially given the crucial role of
interleukins in the pathogenesis of cardiac toxicity.

The results of this study demonstrate the cardioprotective effects of nanoemulsions loaded with
nutraceuticals with abilities of cellular internalization with actin and ATP-dependent mechanism
of uptake. However, we recognize that one limitation of our study is the use of only one
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type of cardiomyocyte and further investigations are required to explore the biological effects of
nutraceutical-loaded nanoemulsions also in endothelial cells as well as in the co-culture of endothelial
and adult cardiomyocytes. Preclinical studies are currently underway in our group to evaluate
modification of left ventricular ejection fraction and factional shortening upon administration of
nanocarriers during doxorubicin treatment, by using conventional murine models of cardiotoxicity
often used by our research group [50].

5. Conclusions

Doxorubicin-induced cardiotoxicity remains a major concern for patients receiving chemotherapy.
There is great interest in identifying compounds and developing drugs aimed at reducing oxidative
stress and lipid peroxidation as well as inhibiting the secretion of interleukin from cardiac cells.
This study shows that nutraceutical-loaded nanocarriers exert cardioprotective effects. Of particular
translational interest are their effects on interleukins especially on IL1-β, considering its prognostic
role in cardiology and its correlation with an increased relative risk of cardiovascular disease [48].
Nutraceuticals loaded in nanocarriers could be considered an emerging strategy with which to elicit
cardioprotection from chemotherapies.
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